Отборочный этап 2025/26

Задачи олимпиады: Физика 11 класс (1 попытка)

Задача 1

Задача 1 #1 1D 4655

На гладкой горизонтальной плоскости лежит доска длиной $0,5\ [\mathrm{M}]$, на которой в середине лежит небольшой брусок массой $1\ [\mathrm{K}\Gamma]$. Коэффициент трения скольжения бруска по доске равен 0,2. К доске прикладывают горизонтальную силу, направленную вдоль доски. Модуль силы зависит от времени по закону $F=f_0\cdot t$, где f_0 — постоянная $[\mathrm{H/c}]$ (значение f_0 не задано), t — время в секундах. Ускорение свободного падения $10\ [\mathrm{M/c}^2]$.

Найдите количество теплоты, выделившейся в результате трения бруска по доске к моменту соскальзывания бруска с конца доски. Доска и брусок движутся поступательно. Ответ приведите в $[\![\]\!]$ с точностью до десятых.

Задача 1 #2 1D 4656

На гладкой горизонтальной плоскости лежит доска длиной $1\ [\mathrm{M}]$, на которой в середине лежит небольшой брусок массой $1\ [\mathrm{K}\Gamma]$. Коэффициент трения скольжения бруска по доске равен 0,2. К доске прикладывают горизонтальную силу, направленную вдоль доски. Модуль силы зависит от времени по закону $F=f_0\cdot t$, где f_0 – постоянная $[\mathrm{H/c}]$ (значение f_0 не задано), t – время в секундах. Ускорение свободного падения $10\ [\mathrm{M/c}^2]$.

Найдите количество теплоты, выделившейся в результате трения бруска по доске к моменту соскальзывания бруска с конца доски. Доска и брусок движутся поступательно. Ответ приведите в $[\![\mathcal{I}_{\!X} \!]]$ с точностью до целого числа.

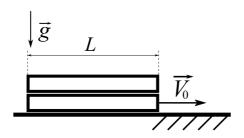
Задача 1 #3 10 4657

На гладкой горизонтальной плоскости лежит доска длиной $1~[{\rm M}]$, на которой в середине лежит небольшой брусок массой $2~[{\rm K}\Gamma]$. Коэффициент трения скольжения бруска по доске равен 0,3. К доске прикладывают горизонтальную силу, направленную вдоль доски. Модуль силы зависит от времени по закону $F=f_0\cdot t$, где f_0 – постоянная $[{\rm H/c}]$ (значение f_0 не задано), t – время в секундах. Ускорение свободного падения $10~[{\rm M/c}^2]$.

Найдите количество теплоты, выделившейся в результате трения бруска по доске к моменту соскальзывания бруска с конца доски. Доска и брусок движутся поступательно. Ответ приведите в $[J_{\infty}]$ с точностью до целого числа.

Задача 1 #4 ID 4658

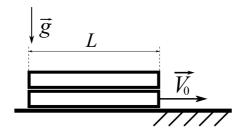
На гладкой горизонтальной плоскости лежит доска длиной $1,5\,$ [м], на которой в середине лежит небольшой брусок массой $2\,$ [кг]. Коэффициент трения скольжения бруска по доске равен 0,3. К доске прикладывают горизонтальную силу, направленную вдоль доски. Модуль силы зависит от времени по закону $F=f_0\cdot t$, где f_0 — постоянная $[\mathrm{H/c}]$ (значение f_0 не задано), t — время в секундах. Ускорение свободного падения $10\,$ $[\mathrm{M/c}^2]$.


Найдите количество теплоты, выделившейся в результате трения бруска по доске к моменту соскальзывания бруска с конца доски. Доска и брусок движутся поступательно. Ответ приведите в $[J_{\mathcal{R}}]$ с точностью до десятых.

Задача 2

Задача 2 #5 10 4659

Две одинаковые доски длиной $L=0,5~[{\rm M}]$, лежащие одна на другой (см. рис.), движутся по горизонтальной плоскости со скоростью $V_0=1,5~[{\rm M/c}]$. В момент времени t=0 доски въезжают с гладкой полуплоскости на шероховатую. Коэффициент трения скольжения нижней доски по шероховатой полуплоскости равен 0,3, коэффициент трения скольжения верхней доски по нижней равен 0,1.


В какой момент времени начнётся относительное движение досок? Ответ приведите в миллисекундах $[{\rm Mc}]$ и округлите до целого числа. Ускорение свободного падения 10 $[{\rm M/c}^2]$. Доски движутся поступательно.

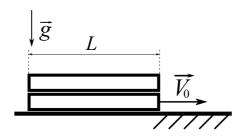
Задача 2 #6 ID 4660

Две одинаковые доски длиной $L=1~[{\rm M}]$, лежащие одна на другой (см. рис.), движутся по горизонтальной плоскости со скоростью $V_0=2~[{\rm M/c}]$. В момент времени t=0 доски въезжают с гладкой полуплоскости на шероховатую. Коэффициент трения скольжения нижней доски по шероховатой полуплоскости равен 0,3, коэффициент трения скольжения верхней доски по нижней равен 0,2.


В какой момент времени начнётся относительное движение досок? Ответ приведите в миллисекундах $[{\rm M}c]$ и округлите до целого числа. Ускорение свободного падения 10 $[{\rm M}/c^2]$. Доски движутся поступательно.

Задача 2 #7 10 4661

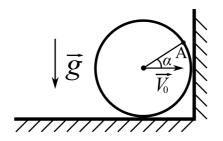
Две одинаковые доски длиной $L=1,5~[{\rm M}]$, лежащие одна на другой (см. рис.), движутся по горизонтальной плоскости со скоростью $V_0=1,5~[{\rm M/c}]$. В момент времени t=0 доски въезжают с гладкой полуплоскости на шероховатую. Коэффициент трения скольжения нижней доски по шероховатой полуплоскости равен 0,3, коэффициент трения скольжения верхней доски по нижней равен 0,2.


В какой момент времени начнётся относительное движение досок? Ответ приведите в миллисекундах $[{\rm M}c]$ и округлите до целого числа. Ускорение свободного падения 10 $[{\rm M}/{\rm c}^2]$. Доски движутся поступательно.

Задача 2 #8 1D 4662

Две одинаковые доски длиной $L=3~[{\rm M}]$, лежащие одна на другой (см. рис.), движутся по горизонтальной плоскости со скоростью $V_0=2~[{\rm M/c}]$. В момент времени t=0 доски въезжают с гладкой полуплоскости на шероховатую. Коэффициент трения скольжения нижней доски по шероховатой полуплоскости равен 0,3, коэффициент трения скольжения верхней доски по нижней равен 0,1.

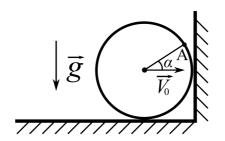
В какой момент времени начнётся относительное движение досок? Ответ приведите в миллисекундах $[{\rm Mc}]$ и округлите до целого числа. Ускорение свободного падения 10 $[{\rm M/c}^2]$. Доски движутся поступательно.



Задача 3

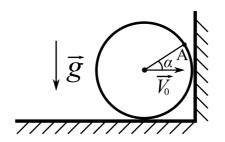
Задача 3 #9 1D 4663

Однородный массивный обруч радиуса 0,5 $[{\rm M}]$ катится без проскальзывания по горизонтальной шероховатой плоскости и абсолютно упруго сталкивается с вертикальной гладкой стенкой. Скорость центра масс обруча перед столкновением со стенкой равна $V_0=1$ $[{\rm M/c}]$. Угол между радиусом, проведённым в точку ${\rm A}$ из центра обруча, и горизонтом равен $\alpha=50^\circ$. Коэффициент трения скольжения обруча по горизонтальной шероховатой плоскости равен 0,1. Ускорение свободного падения 10 $[{\rm M/c}^2]$.


Найдите модуль ускорения точки A в лабораторной системе отсчёта сразу после столкновения обруча со стенкой. Обруч движется в вертикальной плоскости, перпендикулярной стенке. За время соударения модуль скорости центра масс обруча и угловая скорость вращения обруча в системе центра масс не изменяются. Ответ приведите в $[cm/c^2]$ и округлите до целого числа.

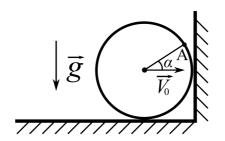
Задача 3 #10 1D 4664

Однородный массивный обруч радиуса 0,7 $[{\rm M}]$ катится без проскальзывания по горизонтальной шероховатой плоскости и абсолютно упруго сталкивается с вертикальной гладкой стенкой. Скорость центра масс обруча перед столкновением со стенкой равна $V_0=1$ $[{\rm M/c}]$. Угол между радиусом, проведённым в точку ${\rm A}$ из центра обруча, и горизонтом равен $\alpha=40^\circ$. Коэффициент трения скольжения обруча по горизонтальной шероховатой плоскости равен 0,2. Ускорение свободного падения 10 $[{\rm M/c}^2]$.


Найдите модуль ускорения точки A в лабораторной системе отсчёта сразу после столкновения обруча со стенкой. Обруч движется в вертикальной плоскости, перпендикулярной стенке. За время соударения модуль скорости центра масс обруча и угловая скорость вращения обруча в системе центра масс не изменяются. Ответ приведите в $[{\rm cm/c}^2]$ и округлите до целого числа.

Задача 3 #11 1D 4665

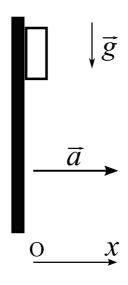
Однородный массивный обруч радиуса 1 $[{\rm M}]$ катится без проскальзывания по горизонтальной шероховатой плоскости и абсолютно упруго сталкивается с вертикальной гладкой стенкой. Скорость центра масс обруча перед столкновением со стенкой равна $V_0=2$ $[{\rm M/c}]$. Угол между радиусом, проведённым в точку ${\rm A}$ из центра обруча, и горизонтом равен $\alpha=30^\circ$. Коэффициент трения скольжения обруча по горизонтальной шероховатой плоскости равен 0,3. Ускорение свободного падения 10 $[{\rm M/c}^2]$.


Найдите модуль ускорения точки A в лабораторной системе отсчёта сразу после столкновения обруча со стенкой. Обруч движется в вертикальной плоскости, перпендикулярной стенке. За время соударения модуль скорости центра масс обруча и угловая скорость вращения обруча в системе центра масс не изменяются. Ответ приведите в $[{\rm cm/c}^2]$ и округлите до целого числа.

Задача 3 #12 1D 4666

Однородный массивный обруч радиуса 1,5 $[{\rm M}]$ катится без проскальзывания по горизонтальной шероховатой плоскости и абсолютно упруго сталкивается с вертикальной гладкой стенкой. Скорость центра масс обруча перед столкновением со стенкой равна $V_0=2$ $[{\rm M/c}]$. Угол между радиусом, проведённым в точку ${\rm A}$ из центра обруча, и горизонтом равен $\alpha=20^\circ$. Коэффициент трения скольжения обруча по горизонтальной шероховатой плоскости равен 0,3. Ускорение свободного падения 10 $[{\rm M/c}^2]$.

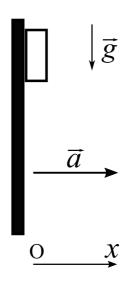
Найдите модуль ускорения точки A в лабораторной системе отсчёта сразу после столкновения обруча со стенкой. Обруч движется в вертикальной плоскости, перпендикулярной стенке. За время соударения модуль скорости центра масс обруча и угловая скорость вращения обруча в системе центра масс не изменяются. Ответ приведите в $[cm/c^2]$ и округлите до целого числа.



Задача 4

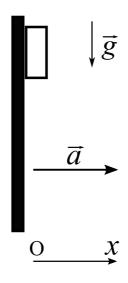
Задача 4 #13 1D 4667

Вертикальная шероховатая плоскость движется поступательно вдоль горизонтальной оси OX. Ускорение плоскости зависит от времени t по закону $a=a_0-\alpha t$, где $a_0=41$ $[{\rm M/c}^2]$, $\alpha=1$ $[{\rm M/c}^3]$. Плоскость толкает перед собой массивный брусок. В момент времени t=0 брусок покоится относительно плоскости, скорость движения плоскости и бруска пренебрежимо мала. Коэффициент трения скольжения бруска по плоскости равен 0,25.


Найдите модуль скорости бруска относительно плоскости в момент времени 2 [c]. Ускорение свободного падения 10 $[{\rm M/c}^2]$. Ответ приведите в $[{\rm cM}/c]$ и округлите до целого числа. Силу сопротивления воздуха, действующую на брусок, считайте пренебрежимо малой. Брусок безотрывно движется по плоскости.

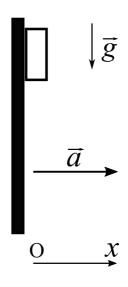
Задача 4 #14 1D 4668

Вертикальная шероховатая плоскость движется поступательно вдоль горизонтальной оси OX. Ускорение плоскости зависит от времени t по закону $a=a_0-\alpha t$, где $a_0=35$ [м/ c^2], $\alpha=2$ [м/ c^3]. Плоскость толкает перед собой массивный брусок. В момент времени t=0 брусок покоится относительно плоскости, скорость движения плоскости и бруска пренебрежимо мала. Коэффициент трения скольжения бруска по плоскости равен 0,3.


Найдите модуль скорости бруска относительно плоскости в момент времени 2 [c]. Ускорение свободного падения 10 $[{\rm M/c}^2]$. Ответ приведите в $[{\rm cM}/c]$ и округлите до целого числа. Силу сопротивления воздуха, действующую на брусок, считайте пренебрежимо малой. Брусок безотрывно движется по плоскости.

Задача 4 #15 1D 4669

Вертикальная шероховатая плоскость движется поступательно вдоль горизонтальной оси OX. Ускорение плоскости зависит от времени t по закону $a=a_0-\alpha t$, где $a_0=30$ $[{\rm M/c}^2]$, $\alpha=3$ $[{\rm M/c}^3]$. Плоскость толкает перед собой массивный брусок. В момент времени t=0 брусок покоится относительно плоскости, скорость движения плоскости и бруска пренебрежимо мала. Коэффициент трения скольжения бруска по плоскости равен 0,4.


Найдите модуль скорости бруска относительно плоскости в момент времени 2 [c]. Ускорение свободного падения 10 $[{\rm M/c}^2]$. Ответ приведите в $[{\rm cM}/c]$ и округлите до целого числа. Силу сопротивления воздуха, действующую на брусок, считайте пренебрежимо малой. Брусок безотрывно движется по плоскости.

Задача 4 #16 1D 4670

Вертикальная шероховатая плоскость движется поступательно вдоль горизонтальной оси OX. Ускорение плоскости зависит от времени t по закону $a=a_0-\alpha t$, где $a_0=27$ $[{\rm M/c}^2]$, $\alpha=1$ $[{\rm M/c}^3]$. Плоскость толкает перед собой массивный брусок. В момент времени t=0 брусок покоится относительно плоскости, скорость движения плоскости и бруска пренебрежимо мала. Коэффициент трения скольжения бруска по плоскости равен 0,4.

Найдите модуль скорости бруска относительно плоскости в момент времени 3 [c]. Ускорение свободного падения 10 $[{\rm M/c}^2]$. Ответ приведите в $[{\rm cm/}c]$ и округлите до целого числа. Силу сопротивления воздуха, действующую на брусок, считайте пренебрежимо малой. Брусок безотрывно движется по плоскости.

Задача 5

Задача 5 #17 ID 4671

Герметичный цилиндрический сосуд разделён на две части лёгким поршнем, который может скользить в сосуде без трения. Первая часть сосуда наполнена одним идеальным газом, а вторая другим. Объём первой части сосуда составляет 20% от объёма сосуда. Отношение молярной массы газа в первой части сосуда к молярной массе газа во второй части сосуда равно 2. Температуры газов одинаковы.

Найдите отношение массы газа в первой части сосуда к массе газа во второй части сосуда. Объём поршня мал по сравнению с объёмом сосуда. Ответ приведите с точностью до десятых.

Задача 5 #18 1D 4672

Герметичный цилиндрический сосуд разделён на две части лёгким поршнем, который может скользить в сосуде без трения. Первая часть сосуда наполнена одним идеальным газом, а вторая другим. Объём первой части сосуда составляет 20% от объёма сосуда. Отношение молярной массы газа в первой части сосуда к молярной массе газа во второй части сосуда равно 7. Температуры газов одинаковы.

Найдите отношение массы газа в первой части сосуда к массе газа во второй части сосуда. Объём поршня мал по сравнению с объёмом сосуда. Ответ приведите с точностью до сотых.

Задача 5 #19 ID 4673

Герметичный цилиндрический сосуд разделён на две части лёгким поршнем, который может скользить в сосуде без трения. Первая часть сосуда наполнена одним идеальным газом, а вторая другим. Объём первой части сосуда составляет 60% от объёма сосуда. Отношение молярной массы газа в первой части сосуда к молярной массе газа во второй части сосуда равно 8. Температуры газов одинаковы.

Найдите отношение массы газа в первой части сосуда к массе газа во второй части сосуда. Объём поршня мал по сравнению с объёмом сосуда. Ответ приведите с точностью до целого числа.

Задача 5 #20 1D 4674

Герметичный цилиндрический сосуд разделён на две части лёгким поршнем, который может скользить в сосуде без трения. Первая часть сосуда наполнена одним идеальным газом, а вторая другим. Объём первой части сосуда составляет 60% от объёма сосуда. Отношение молярной массы газа в первой части сосуда к молярной массе газа во второй части сосуда равно 22. Температуры газов одинаковы.

Найдите отношение массы газа в первой части сосуда к массе газа во второй части сосуда. Объём поршня мал по сравнению с объёмом сосуда. Ответ приведите с точностью до целого числа.

Задача 6

Задача 6 #21 1D 4675

Идеальный одноатомный газ в количестве 4 моль расширяется в процессе, в котором зависимость объёма от температуры $V=\alpha T^n$, где α – постоянная $[{\tt m}^3/{\tt K}^n]$ (значение α не задано), T – температура $[{\tt K}]$, n=3. Начальная температура газа равна $200~{\tt K}$.

Найдите работу газа к тому моменту, когда давление газа уменьшится в 4 раза по сравнению с начальным. Универсальная газовая постоянная $R=8,31~\rm Дж/(моль\cdot K)$. Ответ приведите в $[\kappa \rm Дж]$ и округлите до десятых.

Задача 6 #22 1D 4676

Идеальный одноатомный газ в количестве 3 моль расширяется в процессе, в котором зависимость объёма от температуры $V=\alpha T^n$, где α – постоянная $[{\rm M}^3/{\rm K}^n]$ (значение α не задано), T – температура $[{\rm K}]$, n=4. Начальная температура газа равна $250~{\rm K}$.

Найдите работу газа к тому моменту, когда давление газа уменьшится в 3 раза по сравнению с начальным. Универсальная газовая постоянная $R=8,31~\rm Дж/(моль\cdot K)$. Ответ приведите в $[\kappa \rm Дж]$ и округлите до целого числа.

Задача 6 #23 ID 4677

Идеальный одноатомный газ в количестве 2 моль расширяется в процессе, в котором зависимость объёма от температуры $V=\alpha T^n$, где α – постоянная $[{\bf m}^3/{\bf K}^n]$ (значение α не задано), T – температура $[{\bf K}]$, n=5. Начальная температура газа равна $300~{\bf K}$.

Найдите работу газа к тому моменту, когда давление газа уменьшится в 2 раза по сравнению с начальным. Универсальная газовая постоянная $R=8,31~{\rm Дж/(моль\cdot K)}.$ Ответ приведите в $[\kappa{\rm Дж}]$ и округлите до десятых.

Задача 6 #24 ID 4678

Идеальный одноатомный газ в количестве 1 моль расширяется в процессе, в котором зависимость объёма от температуры $V=\alpha T^n$, где α – постоянная $[{\rm M}^3/{\rm K}^n]$ (значение α не задано), T – температура $[{\rm K}]$, n=6. Начальная температура газа равна $350~{\rm K}$.

Найдите работу газа к тому моменту, когда давление газа уменьшится в 2 раза по сравнению с начальным. Универсальная газовая постоянная $R=8,31~\rm Дж/(моль\cdot K)$. Ответ приведите в $[\kappa \rm Дж]$ и округлите до десятых.

Задача 7

Задача 7 #25 1D 4679

Герметичный цилиндрический сосуд разделен на две части легким подвижным поршнем, который может скользить внутри сосуда без трения. В одной части сосуда находится гелий при температуре $300~{\rm K}$, а в другой — небольшое количество воды и пар при температуре $100~{\rm ^{\circ}C}$. Из сосуда откачивают $2~{\rm моль}$ гелия. Температуру гелия, температуру воды и водяного пара поддерживают при этом постоянными. В процессе откачки гелия часть воды испаряется.

Найдите приращение внутренней энергии системы «вода + пар» за время перехода из начального состояния в конечное. Универсальная газовая постоянная R=8,31 Дж/(моль · К), удельная теплота парообразования воды 2,26 МДж/кг, молярная масса воды 18 г/моль. Теплопроводность поршня пренебрежимо мала. Ответ приведите в $[\kappa Дж]$ и округлите до десятых. Изменение объема воды в процессе испарения считайте пренебрежимо малым.

Задача 7 #26 1D 4680

Герметичный цилиндрический сосуд разделен на две части легким подвижным поршнем, который может скользить внутри сосуда без трения. В одной части сосуда находится гелий при температуре $310~{\rm K}$, а в другой – небольшое количество воды и пар при температуре $100~{\rm ^{\circ}C}$. Из сосуда откачивают $3~{\rm моль}$ гелия. Температуру гелия, температуру воды и водяного пара поддерживают при этом постоянными. В процессе откачки гелия часть воды испаряется.

Найдите приращение внутренней энергии системы «вода + пар» за время перехода из начального состояния в конечное. Универсальная газовая постоянная R=8,31 Дж/(моль · К), удельная теплота парообразования воды 2,26 МДж/кг, молярная масса воды 18 г/моль. Теплопроводность поршня пренебрежимо мала. Ответ приведите в $[\kappa Дж]$ и округлите до десятых. Изменение объема воды в процессе испарения считайте пренебрежимо малым.

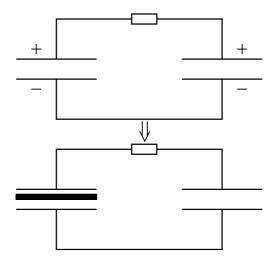
Задача 7 #27 1D 4681

Герметичный цилиндрический сосуд разделен на две части легким подвижным поршнем, который может скользить внутри сосуда без трения. В одной части сосуда находится гелий при температуре $330~{\rm K}$, а в другой — небольшое количество воды и пар при температуре $100~{\rm ^{\circ}C}$. Из сосуда откачивают $5~{\rm моль}$ гелия. Температуру гелия, температуру воды и водяного пара поддерживают при этом постоянными. В процессе откачки гелия часть воды испаряется.

Найдите приращение внутренней энергии системы «вода + пар» за время перехода из начального состояния в конечное. Универсальная газовая постоянная R=8,31 Дж/(моль · К), удельная теплота парообразования воды 2,26 МДж/кг, молярная масса воды 18 г/моль. Теплопроводность поршня пренебрежимо мала. Ответ приведите в $[\kappa Дж]$ и округлите до десятых. Изменение объема воды в процессе испарения считайте пренебрежимо малым.

Задача 7 #28 ID 4682

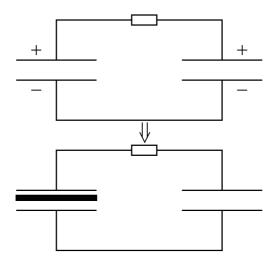
Герметичный цилиндрический сосуд разделен на две части легким подвижным поршнем, который может скользить внутри сосуда без трения. В одной части сосуда находится гелий при температуре $330~{\rm K}$, а в другой – небольшое количество воды и пар при температуре $100~{\rm ^{\circ}C}$. Из сосуда откачивают 7 моль гелия. Температуру гелия, температуру воды и водяного пара поддерживают при этом постоянными. В процессе откачки гелия часть воды испаряется.


Найдите приращение внутренней энергии системы «вода + пар» за время перехода из начального состояния в конечное. Универсальная газовая постоянная R=8,31 Дж/(моль · К), удельная теплота парообразования воды 2,26 МДж/кг, молярная масса воды 18 г/моль. Теплопроводность поршня пренебрежимо мала. Ответ приведите в $[\kappa Дж]$ и округлите до десятых. Изменение объема воды в процессе испарения считайте пренебрежимо малым.

Задача 8

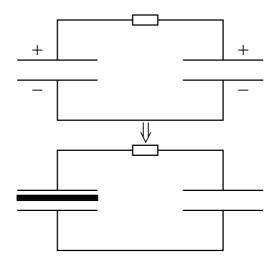
Задача 8 #29 ID 4683

Схема электрической цепи представлена на рисунке. Емкости конденсаторов одинаковы. Заряд каждого конденсатора $3~[{\rm M}\kappa{\rm K}\pi]$. В один конденсатор параллельно обкладкам помещают незаряженную металлическую пластинку так, как показано на рисунке. Толщина пластинки меньше расстояния между обкладками в $2~{\rm pasa}$.


Найдите модуль заряда, индуцированного на гранях металлической пластинки, параллельных обкладкам. Геометрические размеры этих граней и обкладок одинаковы. Ответ приведите в [мкKл] с точностью до целых.

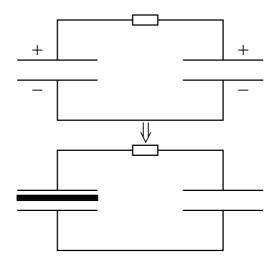
Задача 8 #30 1D 4684

Схема электрической цепи представлена на рисунке. Емкости конденсаторов одинаковы. Заряд каждого конденсатора $5~[{\rm M}\kappa{\rm K}\pi]$. В один конденсатор параллельно обкладкам помещают незаряженную металлическую пластинку так, как показано на рисунке. Толщина пластинки меньше расстояния между обкладками в $3~{\rm pas}$ а.


Найдите модуль заряда, индуцированного на гранях металлической пластинки, параллельных обкладкам. Геометрические размеры этих граней и обкладок одинаковы. Ответ приведите в $[MKK\pi]$ с точностью до целых.

Задача 8 #31 1D 4685

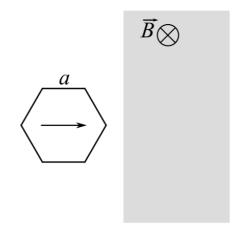
Схема электрической цепи представлена на рисунке. Емкости конденсаторов одинаковы. Заряд каждого конденсатора $7~[{\rm M}\kappa{\rm K}\pi]$. В один конденсатор параллельно обкладкам помещают незаряженную металлическую пластинку так, как показано на рисунке. Толщина пластинки меньше расстояния между обкладками в $4~{\rm pasa}$.


Найдите модуль заряда, индуцированного на гранях металлической пластинки, параллельных обкладкам. Геометрические размеры этих граней и обкладок одинаковы. Ответ приведите в $[MKK\pi]$ с точностью до целых.

Задача 8 #32 1D 4686

Схема электрической цепи представлена на рисунке. Емкости конденсаторов одинаковы. Заряд каждого конденсатора $9~[{\rm M}\kappa{\rm K}\pi]$. В один конденсатор параллельно обкладкам помещают незаряженную металлическую пластинку так, как показано на рисунке. Толщина пластинки меньше расстояния между обкладками в $2~{\rm pasa}$.

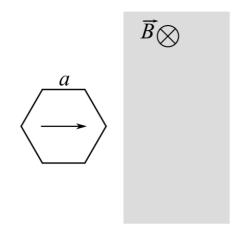
Найдите модуль заряда, индуцированного на гранях металлической пластинки, параллельных обкладкам. Геометрические размеры этих граней и обкладок одинаковы. Ответ приведите в [MKKл] с точностью до целых.



Задача 9

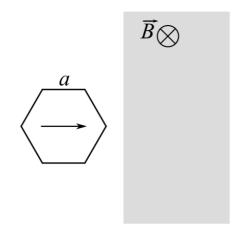
Задача 9 #33 1D 4687

Проволочную рамку в форме правильного шестиугольника с длиной стороны $a=10~{\rm cm}$ перемещают в область однородного магнитного поля с индукцией $B=1~{\rm T}{\rm J}$ (см. рис.). Линии индукции магнитного поля перпендикулярны плоскости рамки. Сопротивление рамки $0,1~{\rm Om}$.


Найдите модуль заряда, протекшего через произвольное сечение проволоки рамки к моменту времени, когда рамка полностью окажется в области однородного магнитного поля. Ответ приведите в $[{\rm MK}\pi]$ с точностью до целых. Самоиндукцией рамки пренебрегите.

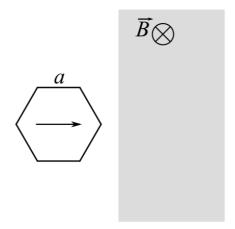
Задача 9 #34 10 4688

Проволочную рамку в форме правильного шестиугольника с длиной стороны $a=15~{\rm cm}$ перемещают в область однородного магнитного поля с индукцией $B=1,5~{\rm T}{\pi}$ (см. рис.). Линии индукции магнитного поля перпендикулярны плоскости рамки. Сопротивление рамки $0,2~{\rm 0m}$.


Найдите модуль заряда, протекшего через произвольное сечение проволоки рамки к моменту времени, когда рамка полностью окажется в области однородного магнитного поля. Ответ приведите в $[{\rm MK}{\pi}]$ с точностью до целых. Самоиндукцией рамки пренебрегите.

Задача 9 #35 1D 4689

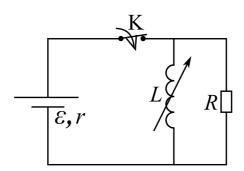
Проволочную рамку в форме правильного шестиугольника с длиной стороны $a=20~{\rm cm}$ перемещают в область однородного магнитного поля с индукцией $B=2~{\rm T}{\scriptstyle \Pi}$ (см. рис.). Линии индукции магнитного поля перпендикулярны плоскости рамки. Сопротивление рамки $0,3~{\rm Om}$.


Найдите модуль заряда, протекшего через произвольное сечение проволоки рамки к моменту времени, когда рамка полностью окажется в области однородного магнитного поля. Ответ приведите в $[{\rm MK}{\rm J}]$ с точностью до целых. Самоиндукцией рамки пренебрегите.

Задача 9 #36 1D 4690

Проволочную рамку в форме правильного шестиугольника с длиной стороны $a=25~{\rm cm}$ перемещают в область однородного магнитного поля с индукцией $B=2~{\rm T}{}_{\rm J}$ (см. рис.). Линии индукции магнитного поля перпендикулярны плоскости рамки. Сопротивление рамки $0,4~{\rm Om}$.

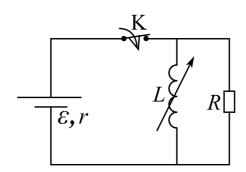
Найдите модуль заряда, протекшего через произвольное сечение проволоки рамки к моменту времени, когда рамка полностью окажется в области однородного магнитного поля. Ответ приведите в $[{\rm MK}{\pi}]$ с точностью до целых. Самоиндукцией рамки пренебрегите.



Задача 10

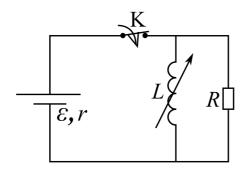
Задача 10 #37 10 4691

Схема электрической цепи показана на рисунке. ЭДС батареи равна $12~[{\rm B}]$, $R=3~[{\rm Om}]$, $r=1~[{\rm Om}]$. Индуктивность L катушки переменная. Через некоторое время после замыкания ключа ЭДС самоиндукции в катушке становится равной $E_L=\alpha E_0$, где $\alpha=0,5$, E_0 – ЭДС самоиндукции в катушке сразу после замыкания ключа. Начиная с этого момента времени, индуктивность начинают изменять таким образом, что ЭДС самоиндукции в катушке остаётся постоянной и равной E_L .


Найдите приращение индуктивности катушки за $20~[{\rm Mc}]$ с момента начала её изменения. Ответ приведите в $[{\rm M}\Gamma{\rm H}]$ с точностью до целых. До замыкания ключа ток в цепи отсутствовал.

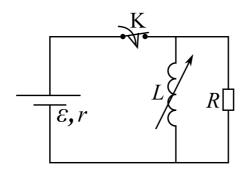
Задача 10 #38 1D 4692

Схема электрической цепи показана на рисунке. ЭДС батареи равна $18~[{\rm B}]$, $R=4~[{\rm OM}]$, $r=2~[{\rm OM}]$. Индуктивность L катушки переменная. Через некоторое время после замыкания ключа ЭДС самоиндукции в катушке становится равной $E_L=\alpha E_0$, где $\alpha=0,5$, E_0 – ЭДС самоиндукции в катушке сразу после замыкания ключа. Начиная с этого момента времени, индуктивность начинают изменять таким образом, что ЭДС самоиндукции в катушке остаётся постоянной и равной E_L .


Найдите приращение индуктивности катушки за $30~[{\rm Mc}]$ с момента начала её изменения. Ответ приведите в $[{\rm M}\Gamma{\rm H}]$ с точностью до целых. До замыкания ключа ток в цепи отсутствовал.

Задача 10 #39 10 4693

Схема электрической цепи показана на рисунке. ЭДС батареи равна $24~[{\rm B}]$, $R=6~[{\rm Om}]$, $r=3~[{\rm Om}]$. Индуктивность L катушки переменная. Через некоторое время после замыкания ключа ЭДС самоиндукции в катушке становится равной $E_L=\alpha E_0$, где $\alpha=0,5$, E_0 – ЭДС самоиндукции в катушке сразу после замыкания ключа. Начиная с этого момента времени, индуктивность начинают изменять таким образом, что ЭДС самоиндукции в катушке остаётся постоянной и равной E_L .


Найдите приращение индуктивности катушки за $30~[{\rm Mc}]$ с момента начала её изменения. Ответ приведите в $[{\rm M}\Gamma{\rm H}]$ с точностью до целых. До замыкания ключа ток в цепи отсутствовал.

Задача 10 #40 1D 4694

Схема электрической цепи показана на рисунке. ЭДС батареи равна $36~[{\rm B}]$, $R=9~[{\rm OM}]$, $r=3~[{\rm OM}]$. Индуктивность L катушки переменная. Через некоторое время после замыкания ключа ЭДС самоиндукции в катушке становится равной $E_L=\alpha E_0$, где $\alpha=0,5$, E_0 – ЭДС самоиндукции в катушке сразу после замыкания ключа. Начиная с этого момента времени, индуктивность начинают изменять таким образом, что ЭДС самоиндукции в катушке остаётся постоянной и равной E_L .

Найдите приращение индуктивности катушки за $40~[{\rm Mc}]$ с момента начала её изменения. Ответ приведите в $[{\rm M}\Gamma{\rm H}]$ с точностью до целых. До замыкания ключа ток в цепи отсутствовал.

