Отборочный этап 2025/26

Задачи олимпиады: Физика 9 класс (1 попытка)

Задача 1

Задача 1 #1 ID 4574

Курьер отправился в поездку на велосипеде. Первую треть времени он ехал со скоростью $V_1=22~{\rm KM/Y}$, затем четверть оставшегося пути со скоростью $V_2=18~{\rm KM/Y}$, остальное – со скоростью $V_3=12~{\rm KM/Y}$.

Найдите среднюю скорость велосипедиста на всем пути. Движение курьера в поездке безостановочное. Ответ приведите в $[\kappa M/\Psi]$ с округлением до целого числа.

Задача 1 #2 1D 4576

Курьер отправился в поездку на велосипеде. Первую треть времени он ехал со скоростью $V_1=25~{\rm KM/Y}$, затем четверть оставшегося пути со скоростью $V_2=21~{\rm KM/Y}$, остальное – со скоростью $V_3=18~{\rm KM/Y}$.

Найдите среднюю скорость велосипедиста на всем пути. Движение курьера в поездке безостановочное. Ответ приведите в $[\kappa M/\Psi]$ с округлением до целого числа.

Задача 1 #3 10 4577

Курьер отправился в поездку на велосипеде. Первую треть времени он ехал со скоростью $V_1=12~{
m km/q}$, затем четверть оставшегося пути со скоростью $V_2=14~{
m km/q}$, остальное – со скоростью $V_3=10~{
m km/q}$.

Найдите среднюю скорость велосипедиста на всем пути. Движение курьера в поездке безостановочное. Ответ приведите в $\lceil \mathrm{KM/4} \rceil$ с округлением до целого числа.

Задача 1 #4 1D 4578

Курьер отправился в поездку на велосипеде. Первую треть времени он ехал со скоростью $V_1=29~{
m KM/Y}$, затем четверть оставшегося пути со скоростью $V_2=19~{
m KM/Y}$, остальное – со скоростью $V_3=25~{
m KM/Y}$.

Найдите среднюю скорость велосипедиста на всем пути. Движение курьера в поездке безостановочное. Ответ приведите в $[\kappa M/\Psi]$ с округлением до целого числа.

Задача 2

Задача 2 #5 1D 4579

Две материальные точки движутся по одной прямой навстречу друг другу. В момент времени t=0 скорости материальных точек $V_1=18~{\rm M/c}$ и $V_2=14~{\rm M/c}$. В процессе сближения ускорения материальных точек $a_1=3~{\rm M/c}^2$ и $a_2=0,2~{\rm M/c}^2$ постоянны и направлены противоположно соответствующим начальным скоростям. В начальный момент расстояние между точками таково, что в момент максимального сближения расстояние между точками равно нулю.

Найдите отношение путей, пройденных первой и второй материальными точками к моменту встречи. Ответ приведите с округлением до сотых.

Задача 2 #6 ID 4580

Две материальные точки движутся по одной прямой навстречу друг другу. В момент времени t=0 скорости материальных точек $V_1=18~{\rm M/c}$ и $V_2=12~{\rm M/c}$. В процессе сближения ускорения материальных точек $a_1=4,0~{\rm M/c}^2$ и $a_2=1,0~{\rm M/c}^2$ постоянны и направлены противоположно соответствующим начальным скоростям. В начальный момент расстояние между точками таково, что в момент максимального сближения расстояние между точками равно нулю.

Найдите отношение путей, пройденных первой и второй материальными точками к моменту встречи. Ответ приведите с округлением до сотых.

Задача 2 #7 10 4581

Две материальные точки движутся по одной прямой навстречу друг другу. В момент времени t=0 скорости материальных точек $V_1=10~{\rm M/c}$ и $V_2=30~{\rm M/c}$. В процессе сближения ускорения материальных точек $a_1=1,5~{\rm M/c}^2$ и $a_2=2,5~{\rm M/c}^2$ постоянны и направлены противоположно соответствующим начальным скоростям. В начальный момент расстояние между точками таково, что в момент максимального сближения расстояние между точками равно нулю.

Найдите отношение путей, пройденных первой и второй материальными точками к моменту встречи. Ответ приведите с округлением до сотых.

Задача 2 #8 ID 4582

Две материальные точки движутся по одной прямой навстречу друг другу. В момент времени t=0 скорости материальных точек $V_1=28~{\rm M/c}$ и $V_2=12~{\rm M/c}$. В процессе сближения ускорения материальных точек $a_1=3,5~{\rm M/c}^2$ и $a_2=0,5~{\rm M/c}^2$ постоянны и направлены противоположно соответствующим начальным скоростям. В начальный момент расстояние между точками таково, что в момент максимального сближения расстояние между точками равно нулю.

Найдите отношение путей, пройденных первой и второй материальными точками к моменту встречи. Ответ приведите с округлением до сотых.

Задача 3

Задача 3 #9 1D 4583

Моторная лодка движется прямолинейно по реке параллельно берегу. Расстояние $S=3780\,\mathrm{m}$ лодка проходит за время $t_1=1800\,\mathrm{c}$. После этого моторная лодка движется по прямой, перпендикулярной берегу, и проходит расстояние $H=900\,\mathrm{m}$ за $t_2=300\,\mathrm{c}$. В системе отсчета, движущейся со скоростью течения реки, моторная лодка движется с одинаковой по модулю скоростью в любом направлении.

Найдите скорость течения реки. Ответ приведите в $[{\rm M}/{\rm c}]$ с округлением до десятых.

Задача 3 #10 1D 4584

Моторная лодка движется прямолинейно по реке параллельно берегу. Расстояние $S=5040~\mathrm{m}$ лодка проходит за время $t_1=1200~\mathrm{c}$. После этого моторная лодка движется по прямой, перпендикулярной берегу, и проходит расстояние $H=600~\mathrm{m}$ за $t_2=100~\mathrm{c}$. В системе отсчета, движущейся со скоростью течения реки, моторная лодка движется с одинаковой по модулю скоростью в любом направлении.

Найдите скорость течения реки. Ответ приведите в $[{\rm M}/{\rm c}]$ с округлением до десятых.

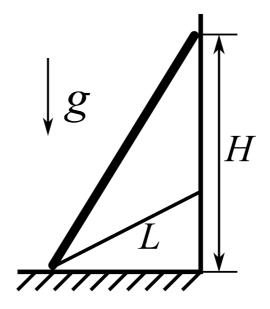
Задача 3 #11 1D 4585

Моторная лодка движется прямолинейно по реке параллельно берегу. Расстояние $S=6300~\mathrm{M}$ лодка проходит за время $t_1=1000~\mathrm{c}$. После этого моторная лодка движется по прямой, перпендикулярной берегу, и проходит расстояние $H=720~\mathrm{M}$ за $t_2=80~\mathrm{c}$. В системе отсчета, движущейся со скоростью течения реки, моторная лодка движется с одинаковой по модулю скоростью в любом направлении.

Найдите скорость течения реки. Ответ приведите в $[{\rm M}/{\rm c}]$ с округлением до десятых.

Задача 3 #12 ID 4586

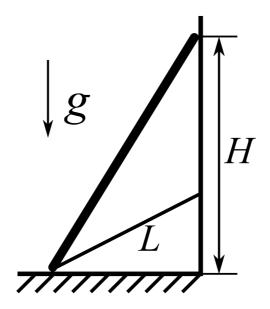
Моторная лодка движется прямолинейно по реке параллельно берегу. Расстояние $S=6700~\mathrm{M}$ лодка проходит за время $t_1=800~\mathrm{C}$. После этого моторная лодка движется по прямой, перпендикулярной берегу, и проходит расстояние $H=1200~\mathrm{M}$ за $t_2=100~\mathrm{C}$. В системе отсчета, движущейся со скоростью течения реки, моторная лодка движется с одинаковой по модулю скоростью в любом направлении.


Найдите скорость течения реки. Ответ приведите в $\lceil {\rm M/c} \rceil$ с округлением до десятых.

Задача 4

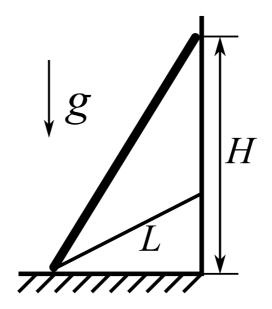
Задача 4 #13 1D 4587

Однородный стержень массой M=1,2 кг опирается на гладкую вертикальную стену на высоте H=0,6 м, отсчитанной от гладкого горизонтального пола (см. рис.). Нижний конец стержня привязан к стене нитью длины L=0,3 м. Ускорение свободного падения g=10 м/ c^2 .


Найдите силу T натяжения нити. Ответ приведите в $[\mathrm{H}]$ с округлением до целого числа.

Задача 4 #14 1D 4588

Однородный стержень массой M=0,8 кг опирается на гладкую вертикальную стену на высоте H=0,4 м, отсчитанной от гладкого горизонтального пола (см. рис.). Нижний конец стержня привязан к стене нитью длины L=0,2 м. Ускорение свободного падения g=10 м/ c^2 .


Найдите силу T натяжения нити. Ответ приведите в $[\mathrm{H}]$ с округлением до целого числа.

Задача 4 #15 1D 4589

Однородный стержень массой M=0,4 кг опирается на гладкую вертикальную стену на высоте H=0,8 м, отсчитанной от гладкого горизонтального пола (см. рис.). Нижний конец стержня привязан к стене нитью длины L=0,4 м. Ускорение свободного падения g=10 м/ c^2 .


Найдите силу T натяжения нити. Ответ приведите в $[\mathrm{H}]$ с округлением до целого числа.

Задача 4 #16 1D 4590

Однородный стержень массой M=1,6 кг опирается на гладкую вертикальную стену на высоте H=0,4 м, отсчитанной от гладкого горизонтального пола (см. рис.). Нижний конец стержня привязан к стене нитью длины L=0,2 м. Ускорение свободного падения q=10 м/с 2 .

Найдите силу T натяжения нити. Ответ приведите в $[\mathrm{H}]$ с округлением до целого числа.

Задача 5

Задача 5 #17 1D 4591

В воде плавают две сплошные фигурки. Каждая фигурка изготовлена из двух разных материалов, плотности которых равны $\rho_1=350~{\rm kr/m}^3$ и $\rho_2=850~{\rm kr/m}^3$. В первой фигурке массы частей одинаковы, во второй фигурке одинаковы объемы.

Какую долю α объема первой фигурки составляет объем ее надводной части? Какую долю β объема второй фигурки составляет объем ее надводной части? Плотность воды $\rho=1000~{\rm kr/m}^3.$

В ответе укажите число $(\alpha-\beta)$ с округлением до десятых.

Задача 5 #18 1D 4592

В воде плавают две сплошные фигурки. Каждая фигурка изготовлена из двух разных материалов, плотности которых равны $\rho_1=400~{\rm kr/m}^3$ и $\rho_2=1450~{\rm kr/m}^3$. В первой фигурке массы частей одинаковы, во второй фигурке одинаковы объемы.

Какую долю α объема первой фигурки составляет объем ее надводной части? Какую долю β объема второй фигурки составляет объем ее надводной части? Плотность воды $\rho=1000~{\rm kr/m}^3.$

В ответе укажите число $(\alpha-\beta)$ с округлением до десятых.

Задача 5 #19 1D 4593

В воде плавают две сплошные фигурки. Каждая фигурка изготовлена из двух разных материалов, плотности которых равны $\rho_1=200~{\rm kr/m}^3$ и $\rho_2=1300~{\rm kr/m}^3$. В первой фигурке массы частей одинаковы, во второй фигурке одинаковы объемы.

Какую долю α объема первой фигурки составляет объем ее надводной части? Какую долю β объема второй фигурки составляет объем ее надводной части? Плотность воды $\rho=1000~{\rm kr/m}^3.$

В ответе укажите число $(\alpha - \beta)$ с округлением до десятых.

Задача 5 #20 1D 4594

В воде плавают две сплошные фигурки. Каждая фигурка изготовлена из двух разных материалов, плотности которых равны $\rho_1=400~{\rm kr/m}^3$ и $\rho_2=1200~{\rm kr/m}^3$. В первой фигурке массы частей одинаковы, во второй фигурке одинаковы объемы.

Какую долю α объема первой фигурки составляет объем ее надводной части? Какую долю β объема второй фигурки составляет объем ее надводной части? Плотность воды $\rho=1000~{\rm kr/m}^3.$

В ответе укажите число $(\alpha - \beta)$ с округлением до десятых.

Задача 6

Задача 6 #21 ID 4595

Металлический образец, длительное время находившийся в сосуде с кипящей при температуре $100\,^\circ\mathrm{C}$ водой, переносят в легкий цилиндрический стакан, наполненный водой при температуре $t_0=10\,^\circ\mathrm{C}$. Уровень воды в стакане увеличивается на $\delta=25\,\%$.

Найдите установившуюся температуру в стакане. Ответ приведите в $[{}^{\circ}C]$ с округлением до целого числа.

Удельные теплоемкости: воды $c=4200~{\rm Дж/(кr\cdot ^{\circ}C)}$, образца $c_1=380~{\rm Дж/(кr\cdot ^{\circ}C)}$, плотности: воды $\rho=1000~{\rm кr/m}^3$, образца $\rho_1=7500~{\rm kr/m}^3$. В теплообмене участвуют только вода и образец. Объемы образца и воды считайте постоянными.

Задача 6 #22 1D 45%

Металлический образец, длительное время находившийся в сосуде с кипящей при температуре $100\,^\circ\text{C}$ водой, переносят в легкий цилиндрический стакан, наполненный водой при температуре $t_0=20\,^\circ\text{C}$. Уровень воды в стакане увеличивается на $\delta=20\,\%$.

Найдите установившуюся температуру в стакане. Ответ приведите в $[{}^{\circ}C]$ с округлением до целого числа.

Удельные теплоемкости: воды $c=4200~{\rm Дж/(кr\cdot ^{\circ}C)}$, образца $c_1=920~{\rm Дж/(кr\cdot ^{\circ}C)}$, плотности: воды $\rho=1000~{\rm кr/m}^3$, образца $\rho_1=2900~{\rm kr/m}^3$. В теплообмене участвуют только вода и образец. Объемы образца и воды считайте постоянными.

Задача 6 #23 1D 4597

Металлический образец, длительное время находившийся в сосуде с кипящей при температуре $100\,^\circ\text{C}$ водой, переносят в легкий цилиндрический стакан, наполненный водой при температуре $t_0=30\,^\circ\text{C}$. Уровень воды в стакане увеличивается на $\delta=20\,\%$.

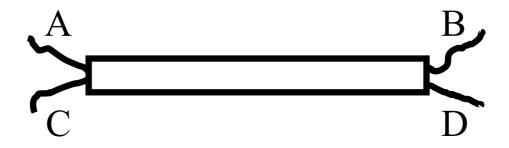
Найдите установившуюся температуру в стакане. Ответ приведите в $[{}^{\circ}C]$ с округлением до целого числа.

Удельные теплоемкости: воды $c=4200~{\rm Дж/(\kappa r\cdot ^{\circ}C)}$, образца $c_1=400~{\rm Дж/(\kappa r\cdot ^{\circ}C)}$, плотности: воды $\rho=1000~{\rm кr/m}^3$, образца $\rho_1=8800~{\rm kr/m}^3$. В теплообмене участвуют только вода и образец. Объемы образца и воды считайте постоянными.

Задача 6 #24 ID 4598

Металлический образец, длительное время находившийся в сосуде с кипящей при температуре $100\,^\circ\mathrm{C}$ водой, переносят в легкий цилиндрический стакан, наполненный водой при температуре $t_0=40\,^\circ\mathrm{C}$. Уровень воды в стакане увеличивается на $\delta=25\,\%$.

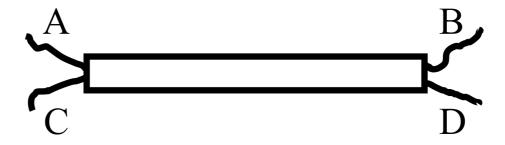
Найдите установившуюся температуру в стакане. Ответ приведите в $[{}^{\circ}C]$ с округлением до целого числа.


Удельные теплоемкости: воды $c=4200~\rm Дж/(\kappa r\cdot ^{\circ}C)$, образца $c_1=450~\rm Дж/(\kappa r\cdot ^{\circ}C)$, плотности: воды $\rho=1000~\rm \kappa r/m^3$, образца $\rho_1=7500~\rm \kappa r/m^3$. В теплообмене участвуют только вода и образец. Объемы образца и воды считайте постоянными.

Задача 7

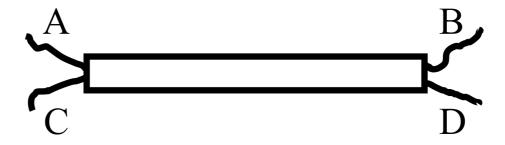
Задача 7 #25 ID 4599

Кабель содержит два одинаковых изолированных провода. Длина каждого провода $L=60\,$ м. При протекании тока по проводам в некоторой точке происходит пробой изоляции, между проводами возникает электрический контакт. Для определения места короткого замыкания измеряют (см. рис.) два сопротивления: R_1 – сопротивление между выводами R_2 и R_3 – сопротивление между выводами R_4 и R_4 – сопротивление между выводами R


Определите расстояние от левого на рисунке конца кабеля до места короткого замыкания. Ответ приведите в $[{\rm M}]$ с округлением до целого числа. Сопротивление контакта и подводящих проводов пренебрежимо мало.

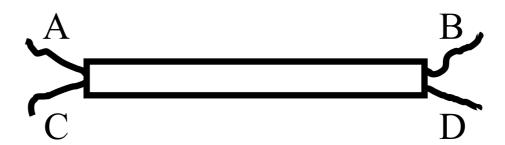
Задача 7 #26 1D 4600

Кабель содержит два одинаковых изолированных провода. Длина каждого провода $L=90\,$ м. При протекании тока по проводам в некоторой точке происходит пробой изоляции, между проводами возникает электрический контакт. Для определения места короткого замыкания измеряют (см. рис.) два сопротивления: R_1 – сопротивление между выводами R_2 и R_2 – сопротивление между выводами R_3 и R_4 . Отношение сопротивлений R_4 и R_5 на R_6 на


Определите расстояние от левого на рисунке конца кабеля до места короткого замыкания. Ответ приведите в $[\mathtt{M}]$ с округлением до целого числа. Сопротивление контакта и подводящих проводов пренебрежимо мало.

Задача 7 #27 1D 4601

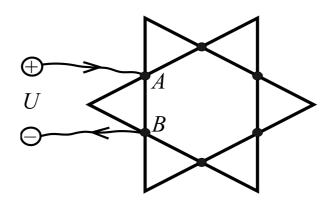
Кабель содержит два одинаковых изолированных провода. Длина каждого провода $L=70\,$ м. При протекании тока по проводам в некоторой точке происходит пробой изоляции, между проводами возникает электрический контакт. Для определения места короткого замыкания измеряют (см. рис.) два сопротивления: R_1 – сопротивление между выводами R_2 и R_2 – сопротивление между выводами R_3 и R_4 . Отношение сопротивлений R_4 и R_5 на R_6 на


Определите расстояние от левого на рисунке конца кабеля до места короткого замыкания. Ответ приведите в $[\mathtt{M}]$ с округлением до целого числа. Сопротивление контакта и подводящих проводов пренебрежимо мало.

Задача 7 #28 1D 4602

Кабель содержит два одинаковых изолированных провода. Длина каждого провода $L=50\,$ м. При протекании тока по проводам в некоторой точке происходит пробой изоляции, между проводами возникает электрический контакт. Для определения места короткого замыкания измеряют (см. рис.) два сопротивления: R_1 – сопротивление между выводами R_2 и R_3 – сопротивление между выводами R_4 и R_4 – сопротивление между выводами R_4 и R_4 – сопротивление между выводами R_4 и R_4 – сопротивление между выводами R_4 на R_4 – сопротивление между выводами R_4 на R_4 на

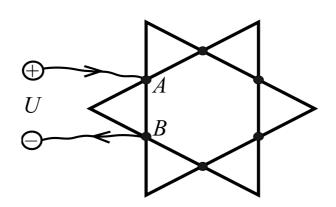
Определите расстояние от левого на рисунке конца кабеля до места короткого замыкания. Ответ приведите в $[{\tt M}]$ с округлением до целого числа. Сопротивление контакта и подводящих проводов пренебрежимо мало.


7777/0274002

Задача 8

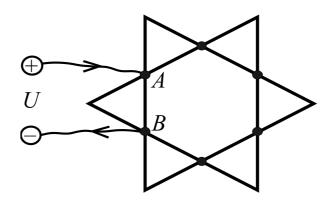
Задача 8 #29 1D 4603

Из проволоки с сопротивлением R=180~0м изготовили два одинаковых равносторонних треугольника и спаяли их так, как показано в схеме на рисунке к задаче. К узлам A и B электрической цепи подключили источник постоянного напряжения $U=50~\mathrm{B}$. (см. рис.).


Какая мощность P рассеивается в этой цепи? Ответ приведите в $[B\tau]$ с округлением до целого числа. Сопротивление подводящих проводов и соединительных контактов пренебрежимо мало.

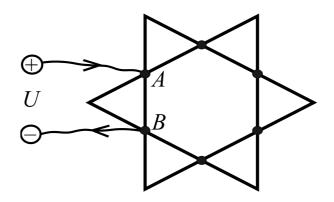
Задача 8 #30 1D 4604

Из проволоки с сопротивлением $R=90~{\rm OM}$ изготовили два одинаковых равносторонних треугольника и спаяли их так, как показано в схеме на рисунке к задаче. К узлам A и B электрической цепи подключили источник постоянного напряжения $U=30~{\rm B.}$ (см. рис.).


Какая мощность P рассеивается в этой цепи? Ответ приведите в [Bt] с округлением до целого числа. Сопротивление подводящих проводов и соединительных контактов пренебрежимо мало.

Задача 8 #31 1D 4605

Из проволоки с сопротивлением $R=72~{
m OM}$ изготовили два одинаковых равносторонних треугольника и спаяли их так, как показано в схеме на рисунке к задаче. К узлам A и B электрической цепи подключили источник постоянного напряжения $U=40~{
m B}$. (см. рис.).


Какая мощность P рассеивается в этой цепи? Ответ приведите в $[\mathrm{Bt}]$ с округлением до целого числа. Сопротивление подводящих проводов и соединительных контактов пренебрежимо мало.

Задача 8 #32 ID 4606

Из проволоки с сопротивлением $R=90~{\rm OM}$ изготовили два одинаковых равносторонних треугольника и спаяли их так, как показано в схеме на рисунке к задаче. К узлам A и B электрической цепи подключили источник постоянного напряжения $U=20~{\rm B.}$ (см. рис.).

Какая мощность P рассеивается в этой цепи? Ответ приведите в $[\mathrm{Bt}]$ с округлением до целого числа. Сопротивление подводящих проводов и соединительных контактов пренебрежимо мало.

Задача 9

Задача 9 #33 ID 4607

Мяч бросают дважды из одной и той же точки с одинаковой начальной скоростью. В первом случае мяч движется по вертикали вверх и через некоторое время T оказывается на расстоянии H=6 м от точки старта. Во втором случае мяч движется по параболе и через то же самое время T находится на расстоянии L=19 м от точки старта на одном горизонтальном уровне с точкой старта. Ускорение свободного падения g=10 м/с 2 . Силу сопротивления воздуха считайте пренебрежимо малой.

Найдите T. Ответ приведите в $[\mathfrak{c}]$ с округлением до десятых.

Задача 9 #34 ID 4608

Мяч бросают дважды из одной и той же точки с одинаковой начальной скоростью. В первом случае мяч движется по вертикали вверх и через некоторое время T оказывается на расстоянии H=7 м от точки старта. Во втором случае мяч движется по параболе и через то же самое время T находится на расстоянии L=23 м от точки старта на одном горизонтальном уровне с точкой старта. Ускорение свободного падения g=10 м/ c^2 . Силу сопротивления воздуха считайте пренебрежимо малой.

Найдите T. Ответ приведите в [c] с округлением до десятых.

Задача 9 #35 1D 4609

Мяч бросают дважды из одной и той же точки с одинаковой начальной скоростью. В первом случае мяч движется по вертикали вверх и через некоторое время T оказывается на расстоянии H=8 м от точки старта. Во втором случае мяч движется по параболе и через то же самое время T находится на расстоянии L=28 м от точки старта на одном горизонтальном уровне с точкой старта. Ускорение свободного падения g=10 м/с 2 . Силу сопротивления воздуха считайте пренебрежимо малой.

Найдите T. Ответ приведите в $[\mathfrak{c}]$ с округлением до десятых.

Задача 9 #36 1D 4610

Мяч бросают дважды из одной и той же точки с одинаковой начальной скоростью. В первом случае мяч движется по вертикали вверх и через некоторое время T оказывается на расстоянии H=9 м от точки старта. Во втором случае мяч движется по параболе и через то же самое время T находится на расстоянии L=40 м от точки старта на одном горизонтальном уровне с точкой старта. Ускорение свободного падения g=10 м/с 2 . Силу сопротивления воздуха считайте пренебрежимо малой.

Найдите T. Ответ приведите в $[\mathfrak{c}]$ с округлением до десятых.

Задача 10

Задача 10 #37 1D 4611

Катер движется в положительном направлении оси ОХ. В момент времени t=0 координата катера x_1 $(x_1>0)$. Начиная с этого момента скорость катера уменьшается по закону $V_x=\frac{A}{x}$, здесь A>0 - постоянная величина, x - текущая координата катера. В момент времени T=9 с координата катера равна nx_1 , здесь n=2.

Найдите показание часов в тот момент, когда координата катера будет равна mx_1 , здесь m=4. Ответ приведите в $[{\mathfrak c}]$ с округлением до целого числа.

Задача 10 #38 10 4612

Катер движется в положительном направлении оси ОХ. В момент времени t=0 координата катера x_1 $(x_1>0)$. Начиная с этого момента скорость катера уменьшается по закону $V_x=\frac{A}{x}$, здесь A>0 - постоянная величина, x - текущая координата катера. В момент времени T=16 с координата катера равна nx_1 , здесь n=3.

Найдите показание часов в тот момент, когда координата катера будет равна mx_1 , здесь m=6. Ответ приведите в $[\mathfrak{c}]$ с округлением до целого числа.

Задача 10 #39 10 4613

Катер движется в положительном направлении оси ОХ. В момент времени t=0 координата катера x_1 $(x_1>0)$. Начиная с этого момента скорость катера уменьшается по закону $V_x=\frac{A}{x}$, здесь A>0 - постоянная величина, x - текущая координата катера. В момент времени T=15 с координата катера равна nx_1 , здесь n=4.

Найдите показание часов в тот момент, когда координата катера будет равна mx_1 , здесь m=9. Ответ приведите в $[{\bf c}]$ с округлением до целого числа.

Задача 10 #40 1D 4614

Катер движется в положительном направлении оси ОХ. В момент времени t=0 координата катера x_1 $(x_1>0)$. Начиная с этого момента скорость катера уменьшается по закону $V_x=\frac{A}{x}$, здесь A>0 - постоянная величина, x - текущая координата катера. В момент времени T=24 с координата катера равна nx_1 , здесь n=7.

Найдите показание часов в тот момент, когда координата катера будет равна mx_1 , здесь m=11. Ответ приведите в $[{\bf c}]$ с округлением до целого числа.