05 октября 2025 года. Отборочный этап 2025/26 Задачи олимпиады: Физика 10 класс

- **1. Решение** По условию $\left(\vec{V_2}-\vec{V_1}\right)^2=n^2\left(V_2-V_1\right)^2$, здесь V_1 скорость корабля, V_2 скорость торпеды. Далее $V_1^2+V_2^2-2V_1V_2\cos\alpha=n^2\left(V_1^2-2V_1V_2+V_2^2\right)$. Отсюда следует $\left(\frac{V_2}{V_1}\right)^2-2\frac{n^2-\cos\alpha}{n^2-1}\left(\frac{V_2}{V_1}\right)+1=0$, окончательно $\frac{V_2}{V_1}=p+\sqrt{p^2-1},\quad p=\frac{n^2-\cos\alpha}{n^2-1}.$
- **2. Решение** По условию $V_1T_1 = V_2T_2$, искомая скорость

$$V=V_1-0,5aT_1=V_2+0,5aT_2$$
, из этих соотношений следует $0,5aT_1=\frac{V_1-V_2}{V_1+V_2}V_2$, тогда $V=\frac{V_1^2+V_2^2}{V_1+V_2}$.

3. Решение Обратимся к соображениям симметрии. Считаем, что соударение со стенкой происходит через τ после старта. Тогда в высшей точке траектории мяч находится через время $1,5\cdot\tau$ после старта. За это время вертикальные перемещения мяча за три последовательных равных промежутка времени каждый длительностью $0,5\cdot\tau$ относятся как 5:3:1. Наибольшая высота полета

мяча
$$\frac{9}{8}h = \frac{g}{2} \left(\frac{T}{2}\right)^2$$
, отсюда $T = 3\sqrt{\frac{h}{g}}$.

4. Решение

В первом случае $a_1=\frac{F}{m}$. Во втором случае $m\vec{a}_2=m\vec{g}+\vec{F}+\vec{N}_2+\vec{F}_{TP}$. Переходя к проекциям сил и ускорения на вертикаль и горизонтальное направление $N_2=mg-F\sin\alpha$, $ma_2=F\cos\alpha-F_{TP}=F\cos\alpha-\mu(mg-F\sin\alpha)$, здесь учтено, что при скольжении $F_{TP}=\mu N_2$. Далее

$$a_2 = a_1 \left(\mu \sin \alpha + \cos \alpha \right) - \mu g = a_1 \sqrt{1 + \mu^2} \sin \left(\alpha + \varphi_0 \right) - \mu g, \quad ctg \varphi_0 = \mu \,.$$
 Тогда
$$a_{2MAX} = a_1 \sqrt{1 + \mu^2} - \mu g \,, \, S_{MAX} = \frac{a_{MAX}}{2} T^2 = \frac{1}{2} \left(a_1 \sqrt{1 + \mu^2} - \mu g \right) T^2 \,.$$

5. Решение По закону сложения скоростей находим модуль начальной скорости шайбы относительно ленты $U = \sqrt{\left(nV\right)^2 + V^2} = \sqrt{n^2 + 1} \cdot V$. Ускорение шайбы

 $a = \mu g$, $\vec{a} \uparrow \downarrow \vec{U}$. Время движения шайбы по ленте $T = \frac{U}{a} = \sqrt{n^2 + 1} \frac{V}{\mu g}$. При равнопеременном движении $\vec{r}(t) = 0, 5 \cdot \left(\vec{V}(0) + \vec{V}(t)\right) \cdot t$. В момент остановки шайбы на ленте $\left|\vec{V}(0) + \vec{V}(T)\right| = U$. Тогда $\left|\vec{r}(T)\right| = 0, 5 \left|\vec{V}(0) + \vec{V}(T)\right| T = \frac{U^2}{2\mu g} = \left(n^2 + 1\right) \frac{V^2}{2\mu g}$.

6. Решение

По условию $\mu_1 < tg\alpha$, $\mu_2 > tg\alpha$: санки на верхнем участке склона движутся равноускоренно, на нижнем — равнозамедленно. При движении по склону от старта до финиша приращение потенциальной энергии, отсчитанной от нуля у основания склона, равно $\Pi_2 - \Pi_1 = -mgH$, приращение кинетической энергии $K_2 - K_1 = 0$. Сумма работ сил трения скольжения

$$A_{12} = -\mu_1 mg \cos \alpha \cdot \frac{H - h}{\sin \alpha} - \mu_2 mg \cos \alpha \cdot \frac{h}{\sin \alpha} = -\frac{mg}{tg\alpha} (\mu_1 H + (\mu_2 - \mu_1)h),$$

здесь h — высота, на которой находится граница участков. По теореме об изменении полной механической энергии $-mgH = -\frac{mg}{tg\alpha} \left(\mu_1 H + \left(\mu_2 - \mu_1\right)h\right)$.

Отсюда $h=\frac{tg\,\alpha-\mu_1}{\mu_2-\mu_1}\,H$. Длина участка разгона $S_1=\frac{H-h}{\sin\alpha}=\frac{\mu_2-tg\,\alpha}{\sin\alpha\left(\mu_2-\mu_1\right)}\,H$,

ускорение на участке разгона $a = g(\sin \alpha - \mu_1 \cos \alpha)$. Искомая скорость

$$V_{\text{MAX}} = \sqrt{2aS_1} = \sqrt{2g\left(\sin\alpha - \mu_1\cos\alpha\right) \cdot \frac{\mu_2 - tg\alpha}{\sin\alpha\left(\mu_2 - \mu_1\right)}H}.$$

7. Решение Обозначения: m — масса налетающей шайбы, M — масса покоящейся шайбы. По законам сохранения: импульса $mv = mv_{1x} + Mv_2$ и энергии $mv^2 mv_{1x}^2 Mv_2^2$ 2m $P\% M(v_2)^2$ 4mM

$$\frac{mv^2}{2} = \frac{mv_{1x}^2}{2} + \frac{Mv_2^2}{2}, \text{ отсюда } v_2 = \frac{2m}{m+M}v, \text{ далее } p = \frac{P\%}{100\%} = \frac{M}{m} \left(\frac{v_2}{v}\right)^2 = \frac{4mM}{\left(m+M\right)^2}$$

. Это равенство перепишем в виде $x + \frac{1}{x} + 2 = \frac{4}{p}$, здесь $x = \frac{m}{M}$. Окончательно

$$m = M\left(\frac{2}{p} - 1 + \sqrt{\left(\frac{2}{p} - 1\right)^2 - 1}\right).$$

8. Решение

В исходном состоянии в каждом баллоне PV=vRT, в конечном состоянии $\tilde{P}V=v_1RnT$, $\tilde{P}V=v_2RT$, отсюда $v_2=nv_1$, далее $v_1+v_2=2v$. Число моль в первом сосуде $v_1=\frac{2}{n+1}v$. Искомая величина $\delta=\frac{v-v_1}{v}\cdot 100\%=\frac{n-1}{n+1}\cdot 100\%$.

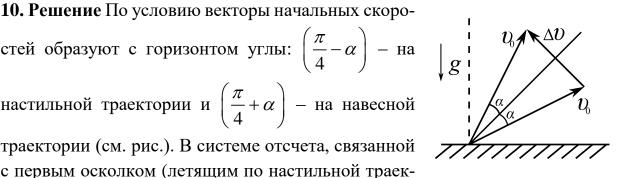
9. Решение

При любом одинаковом объеме отношение давлений на изотермах $\frac{P_2}{P} = \frac{T_2}{T} = \left(1 + \frac{\alpha\%}{100\%}\right)^2$, следовательно отношение работ (и количеств теплоты!)

на изотермах равно отношению температур, тогда $A = \left(1 + \frac{\alpha\%}{100\%}\right)^2 Q$.

на изотермах равло ... **10. Решение** По условию векторы начальных скоростей образуют с горизонтом углы: $\left(\frac{\pi}{4} - \alpha\right)$ — на навесной $\left(\frac{\pi}{4} - \alpha\right)$ — на навесной

траектории (см. рис.). В системе отсчета, связанной



тории), расстояние между осколками растет со скоростью $\Delta v = 2v_0 \sin \alpha$. Про-

должительность полета первого осколка $T = 2 \frac{v_0}{\sigma} \sin \left(\frac{\pi}{4} - \alpha \right)$. В момент паде-

ния первого осколка на площадку расстояние между осколками

$$d = \Delta v \cdot T = 2\frac{v_0^2}{g} 2\sin\alpha \cdot \sin\left(\frac{\pi}{4} - \alpha\right) = 2\frac{v_0^2}{g} \left(\cos\left(2\alpha - \frac{\pi}{4}\right) - \cos\left(\frac{\pi}{4}\right)\right).$$

Наибольшее расстояние наблюдается при $\cos\left(2\alpha - \frac{\pi}{4}\right) = 1$, $\alpha = \frac{\pi}{8}$ и равно

$$d_{ extit{MAX}} = \left(2 - \sqrt{2}\right) rac{v_0^2}{g}$$
. Отсюда
$$v_0 = \sqrt{rac{g\,d_{ extit{MAX}}}{2 - \sqrt{2}}} = \sqrt{\left(1 + rac{\sqrt{2}}{2}
ight)} g\,d_{ extit{MAX}} \;.$$