Отборочный этап 2025/26

Задачи олимпиады: Физика 10 класс (2 попытка)

Задача 1

Задача 1 #1 ID 4860

Материальная точка движется по оси 0Х лабораторной системы отсчета. Начиная с момента времени t=0, координата x точки и проекция V_X скорости связаны соотношением $x=\alpha V_x^2+\beta$, здесь $\alpha=-2$ ${\rm c}^2/{\rm M}$, $\beta=2$ м. В начальный момент точка находится в начале отсчета и движется в положительном направлении оси 0Х.

Найдите координату x точки в момент времени $T=12\ c$. Ответ приведите в $[\mathtt{M}]$ с округлением до целого числа.

Задача 1 #2 1D 4861

Материальная точка движется по оси 0Х лабораторной системы отсчета. Начиная с момента времени t=0, координата x точки и проекция V_X скорости связаны соотношением $x=\alpha V_x^2+\beta$, здесь $\alpha=-3$ с $^2/$ м, $\beta=3$ м. В начальный момент точка находится в начале отсчета и движется в положительном направлении оси 0Х.

Найдите координату x точки в момент времени $T=18\ c$. Ответ приведите в $[{\tt M}]$ с округлением до целого числа.

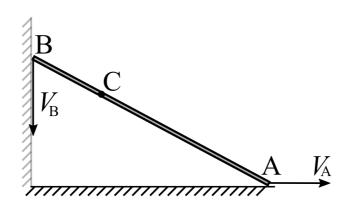
Задача 1 #3 1D 4862

Материальная точка движется по оси 0Х лабораторной системы отсчета. Начиная с момента времени t=0, координата x точки и проекция V_X скорости связаны соотношением $x=\alpha V_x^2+\beta$, здесь $\alpha=-1$ ${\rm c}^2/{\rm M}$, $\beta=4$ м. В начальный момент точка находится в начале отсчета и движется в положительном направлении оси 0Х.

Найдите координату x точки в момент времени $T=12\ c$. Ответ приведите в $[{\tt M}]$ с округлением до целого числа.

Задача 1 #4 ID 4863

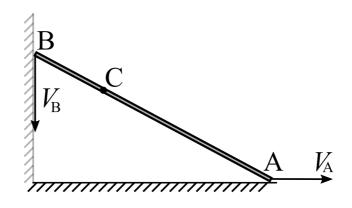
Материальная точка движется по оси 0Х лабораторной системы отсчета. Начиная с момента времени t=0, координата x точки и проекция V_X скорости связаны соотношением $x=\alpha V_x^2+\beta$, здесь $\alpha=-4$ ${\rm c}^2/{\rm M}$, $\beta=1$ м. В начальный момент точка находится в начале отсчета и движется в положительном направлении оси 0Х.


Найдите координату x точки в момент времени $T=12\ c$. Ответ приведите в $[\mathtt{M}]$ с округлением до целого числа.

Задача 2

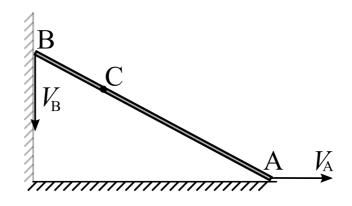
Задача 2 #5 1D 4864

Концы движущегося стержня скользят по сторонам прямого угла (см. рис.). В некоторый момент скорость точки A равна $V_A=3$ м/с, скорость точки B равна $V_B=7$ м/с. Точка C делит стержень в отношении $\frac{AC}{CB}=3$.


Найдите скорость точки C в этот момент. Ответ приведите в $[\mathrm{M}/\mathrm{C}]$ с округлением до десятых.

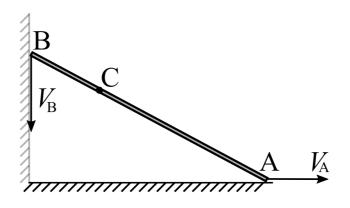
Задача 2 #6 ID 4865

Концы движущегося стержня скользят по сторонам прямого угла (см. рис.). В некоторый момент скорость точки A равна $V_A=2$ м/с, скорость точки B равна $V_B=5$ м/с. Точка C делит стержень в отношении $\dfrac{AC}{CB}=4$.


Найдите скорость точки C в этот момент. Ответ приведите в $[\mathrm{m}/\mathrm{c}]$ с округлением до десятых.

Задача 2 #7 1D 4866

Концы движущегося стержня скользят по сторонам прямого угла (см. рис.). В некоторый момент скорость точки A равна $V_A=3$ м/с, скорость точки B равна $V_B=5$ м/с. Точка C делит стержень в отношении $\dfrac{AC}{CB}=2$.


Найдите скорость точки C в этот момент. Ответ приведите в $[\mathrm{M}/\mathrm{c}]$ с округлением до десятых.

Задача 2 #8 10 4867

Концы движущегося стержня скользят по сторонам прямого угла (см. рис.). В некоторый момент скорость точки A равна $V_{\rm A}=3$ м/с, скорость точки B равна $V_{\rm B}=8$ м/с. Точка C делит стержень в отношении $\frac{{
m AC}}{{
m CB}}=5$.

Найдите скорость точки C в этот момент. Ответ приведите в $[\mathrm{M}/\mathrm{c}]$ с округлением до десятых.

Задача 3

Задача 3 #9 1D 4868

Колечко покоится на вершине гладкой проволочной параболы $y=y_0-Ax^2$, здесь $A=14~{\rm M}^{-1}$, $y_0>0$, координаты x,y,y_0 измерены в метрах. Проволочная парабола расположена в вертикальной плоскости.

Какую начальную скорость следует сообщить колечку, чтобы сила, с которой колечко действует на проволоку, была равна нулю в течение всего времени движения? Ускорение свободного падения $g=10\,$ м/с 2 . Силу сопротивления воздуха считайте пренебрежимо малой. Ответ приведите в $[\mathrm{m/c}]$ с округлением до десятых.

Задача 3 #10 1D 4869

Колечко покоится на вершине гладкой проволочной параболы $y=y_0-Ax^2$, здесь $A=31~{\rm m}^{-1}$, $y_0>0$, координаты x,y,y_0 измерены в метрах. Проволочная парабола расположена в вертикальной плоскости.

Какую начальную скорость следует сообщить колечку, чтобы сила, с которой колечко действует на проволоку, была равна нулю в течение всего времени движения? Ускорение свободного падения $g=10\,$ м/c 2 . Силу сопротивления воздуха считайте пренебрежимо малой. Ответ приведите в $[{\rm M/c}]$ с округлением до десятых.

Задача 3 #11 1D 4870

Колечко покоится на вершине гладкой проволочной параболы $y=y_0-Ax^2$, здесь $A=55\,$ м $^{-1}$, $y_0>0$, координаты x,y,y_0 измерены в метрах. Проволочная парабола расположена в вертикальной плоскости.

Какую начальную скорость следует сообщить колечку, чтобы сила, с которой колечко действует на проволоку, была равна нулю в течение всего времени движения? Ускорение свободного падения $g=10\,$ м/с 2 . Силу сопротивления воздуха считайте пренебрежимо малой. Ответ приведите в $[\mathrm{M/c}]$ с округлением до десятых.

Задача 3 #12 ID 4871

Колечко покоится на вершине гладкой проволочной параболы $y=y_0-Ax^2$, здесь $A=124~{\rm M}^{-1}$, $y_0>0$, координаты x,y,y_0 измерены в метрах. Проволочная парабола расположена в вертикальной плоскости.

Какую начальную скорость следует сообщить колечку, чтобы сила, с которой колечко действует на проволоку, была равна нулю в течение всего времени движения? Ускорение свободного падения $g=10\,$ м/с 2 . Силу сопротивления воздуха считайте пренебрежимо малой. Ответ приведите в $[\mathrm{m/c}]$ с округлением до десятых.

Задача 4

Задача 4 #13 ID 4872

На шероховатой горизонтальной плоскости расположен клин. Шайбу удерживают на шероховатой наклонной плоскости клина, образующей с горизонтом угол $\alpha=30^\circ$, а затем отпускают. Шайба движется по покоящемуся клину с нулевой начальной скоростью. Горизонтальная составляющая силы, с которой клин действует на плоскость, равна F=5~H.

Найдите кинетическую энергию шайбы после перемещения на $S=1,3\,$ м от точки старта. Ответ приведите в $[\![\mbox{Дж}]\!]$ с округлением до десятых.

Задача 4 #14 ID 4873

На шероховатой горизонтальной плоскости расположен клин. Шайбу удерживают на шероховатой наклонной плоскости клина, образующей с горизонтом угол $\alpha=27^\circ$, а затем отпускают. Шайба движется по покоящемуся клину с нулевой начальной скоростью. Горизонтальная составляющая силы, с которой клин действует на плоскость, равна F=4~H.

Найдите кинетическую энергию шайбы после перемещения на $S=0,8\,$ м от точки старта. Ответ приведите в $[\mbox{Дж}]$ с округлением до десятых.

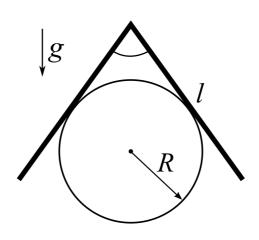
Задача 4 #15 1D 4874

На шероховатой горизонтальной плоскости расположен клин. Шайбу удерживают на шероховатой наклонной плоскости клина, образующей с горизонтом угол $\alpha=39^\circ$, а затем отпускают. Шайба движется по покоящемуся клину с нулевой начальной скоростью. Горизонтальная составляющая силы, с которой клин действует на плоскость, равна F=7~H.

Найдите кинетическую энергию шайбы после перемещения на $S=0,6\,$ м от точки старта. Ответ приведите в $[\![\mbox{Дж}]\!]$ с округлением до десятых.

Задача 4 #16 ID 4875

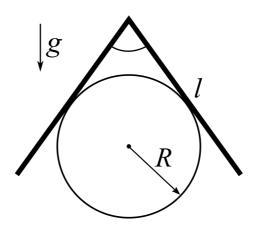
На шероховатой горизонтальной плоскости расположен клин. Шайбу удерживают на шероховатой наклонной плоскости клина, образующей с горизонтом угол $\alpha=30^\circ$, а затем отпускают. Шайба движется по покоящемуся клину с нулевой начальной скоростью. Горизонтальная составляющая силы, с которой клин действует на плоскость, равна F=4~H.


Найдите кинетическую энергию шайбы после перемещения на $S=0,5\,$ м от точки старта. Ответ приведите в $[\![\mbox{Дж}]\!]$ с округлением до десятых.

Задача 5

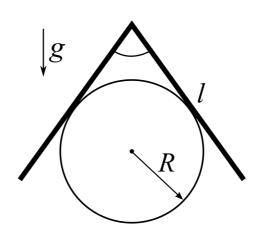
Задача 5 #17 1D 4876

Два шарнирно соединенных стержня покоятся на цилиндре. Стержни однородные, масса каждого стержня $m=0,3\,$ кг, длина каждого стержня в два раза больше диаметра цилиндра. Ось цилиндра горизонтальная. Все поверхности гладкие.


Найдите модуль силы, с которой шарнир действует на каждый стержень. Ускорение свободного падения $g=10~{\rm M/c}^2$. Ответ приведите в $[{\rm H}]$ с округлением до целого числа.

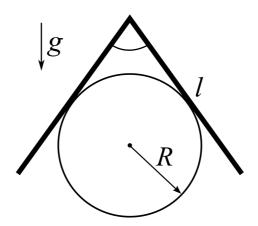
Задача 5 #18 1D 4877

Два шарнирно соединенных стержня покоятся на цилиндре. Стержни однородные, масса каждого стержня $m=0,5\,$ кг, длина каждого стержня в два раза больше диаметра цилиндра. Ось цилиндра горизонтальная. Все поверхности гладкие.


Найдите модуль силы, с которой шарнир действует на каждый стержень. Ускорение свободного падения $g=10~{\rm m/c}^2$. Ответ приведите в $[{\rm H}]$ с округлением до целого числа.

Задача 5 #19 1D 4878

Два шарнирно соединенных стержня покоятся на цилиндре. Стержни однородные, масса каждого стержня $m=0,7\,$ кг, длина каждого стержня в два раза больше диаметра цилиндра. Ось цилиндра горизонтальная. Все поверхности гладкие.


Найдите модуль силы, с которой шарнир действует на каждый стержень. Ускорение свободного падения $g=10~{\rm m/c}^2$. Ответ приведите в $[{\rm H}]$ с округлением до целого числа.

Задача 5 #20 1D 4879

Два шарнирно соединенных стержня покоятся на цилиндре. Стержни однородные, масса каждого стержня $m=0,9\,$ кг, длина каждого стержня в два раза больше диаметра цилиндра. Ось цилиндра горизонтальная. Все поверхности гладкие.

Найдите модуль силы, с которой шарнир действует на каждый стержень. Ускорение свободного падения $g=10~{\rm M/c}^2$. Ответ приведите в $[{\rm H}]$ с округлением до целого числа.

Задача 6

Задача 6 #21 1D 4880

Мешок с песком падает на длинную шероховатую доску, лежащую на гладкой горизонтальной поверхности, и безотрывно скользит по доске. Масса мешка в n=8 раз меньше массы доски. Перед соударением с доской мешок движется со скоростью $V_0=9~{\rm M/c}$ под углом $\alpha=45^\circ$ к горизонту. Коэффициент трения скольжения мешка по доске $\mu=0,2$ и не зависит от скорости и силы давления мешка на доску. Ускорение свободного падения $g=10~{\rm M/c}^2$. Доска и мешок движутся поступательно.

Через какое время T мешок остановится на доске? Действие силы тяжести в процессе соударения мешка с доской считайте пренебрежимо малым. Ответ приведите в [c] с округлением до десятых.

Задача 6 #22 1D 4881

Мешок с песком падает на длинную шероховатую доску, лежащую на гладкой горизонтальной поверхности, и безотрывно скользит по доске. Масса мешка в n=6 раз меньше массы доски. Перед соударением с доской мешок движется со скоростью $V_0=8~{\rm M/c}$ под углом $\alpha=30^\circ$ к горизонту. Коэффициент трения скольжения мешка по доске $\mu=0,4$ и не зависит от скорости и силы давления мешка на доску. Ускорение свободного падения $g=10~{\rm M/c}^2$. Доска и мешок движутся поступательно.

Через какое время T мешок остановится на доске? Действие силы тяжести в процессе соударения мешка с доской считайте пренебрежимо малым. Ответ приведите в $[{\bf c}]$ с округлением до десятых.

Задача 6 #23 ID 4882

Мешок с песком падает на длинную шероховатую доску, лежащую на гладкой горизонтальной поверхности, и безотрывно скользит по доске. Масса мешка в n=17 раз меньше массы доски. Перед соударением с доской мешок движется со скоростью $V_0=11~{\rm M/c}$ под углом $\alpha=45^\circ$ к горизонту. Коэффициент трения скольжения мешка по доске $\mu=0,3$ и не зависит от скорости и силы давления мешка на доску. Ускорение свободного падения $q=10~{\rm M/c}^2$. Доска и мешок движутся поступательно.

Через какое время T мешок остановится на доске? Действие силы тяжести в процессе соударения мешка с доской считайте пренебрежимо малым. Ответ приведите в $[\mathfrak{c}]$ с округлением до десятых.

Задача 6 #24 1D 4883

Мешок с песком падает на длинную шероховатую доску, лежащую на гладкой горизонтальной поверхности, и безотрывно скользит по доске. Масса мешка в n=15 раз меньше массы доски. Перед соударением с доской мешок движется со скоростью $V_0=10~{\rm M/c}$ под углом $\alpha=60^\circ$ к горизонту. Коэффициент трения скольжения мешка по доске $\mu=0,3$ и не зависит от скорости и силы давления мешка на доску. Ускорение свободного падения $g=10~{\rm M/c}^2$. Доска и мешок движутся поступательно.

Через какое время T мешок остановится на доске? Действие силы тяжести в процессе соударения мешка с доской считайте пренебрежимо малым. Ответ приведите в $[\mathfrak{c}]$ с округлением до десятых.

Задача 7

Задача 7 #25 1D 4884

Искусственная планета обращается вокруг Солнца. При наблюдении с Земли за этой планетой максимальный угол между направлением на Солнце и на планету равен $\alpha=15^\circ$.

Найдите период обращения искусственной планеты вокруг Солнца. Считайте, что Земля и искусственная планета движутся вокруг Солнца по окружностям, лежащим в одной плоскости. Период обращения Земли вокруг Солнца $T_1=365\,$ суток. Ответ приведите в сутках с округлением до целых.

Задача 7 #26 ID 4885

Искусственная планета обращается вокруг Солнца. При наблюдении с Земли за этой планетой максимальный угол между направлением на Солнце и на планету равен $lpha=25^\circ.$

Найдите период обращения искусственной планеты вокруг Солнца. Считайте, что Земля и искусственная планета движутся вокруг Солнца по окружностям, лежащим в одной плоскости. Период обращения Земли вокруг Солнца $T_1=365\,$ суток. Ответ приведите в сутках с округлением до целых.

Задача 7 #27 ID 4886

Искусственная планета обращается вокруг Солнца. При наблюдении с Земли за этой планетой максимальный угол между направлением на Солнце и на планету равен $\alpha=39^\circ.$

Найдите период обращения искусственной планеты вокруг Солнца. Считайте, что Земля и искусственная планета движутся вокруг Солнца по окружностям, лежащим в одной плоскости. Период обращения Земли вокруг Солнца $T_1=365\,$ суток. Ответ приведите в сутках с округлением до целых.

Задача 7 #28 1D 4887

Искусственная планета обращается вокруг Солнца. При наблюдении с Земли за этой планетой максимальный угол между направлением на Солнце и на планету равен $\alpha=60^\circ.$

Найдите период обращения искусственной планеты вокруг Солнца. Считайте, что Земля и искусственная планета движутся вокруг Солнца по окружностям, лежащим в одной плоскости. Период обращения Земли вокруг Солнца $T_1=365\,$ суток. Ответ приведите в сутках с округлением до целых.

Задача 8

Задача 8 #29 1D 4888

В простейшей модели атмосферы Венеры предполагалось, что планету окружает атмосфера, состоящая из углекислого газа, высота атмосферы $H=20\,\,\mathrm{KM}$, плотность атмосферы одинакова на всех высотах.

Какова в этой модели температура атмосферы вблизи поверхности Венеры? Ускорение свободного падения у поверхности Венеры $g=8,8~{\rm M/c}^2$. Молярная масса углекислого газа $\mu=44~{\rm \Gamma/M0Лb}$. Универсальная газовая постоянная $R=8,31~{\rm Дж/(M0Лb\cdot K)}$. Углекислый газ считайте идеальным газом. Ответ приведите в $[{\rm K}]$ с округлением до целого числа.

Задача 8 #30 ID 4889

В простейшей модели атмосферы Венеры предполагалось, что планету окружает атмосфера, состоящая из углекислого газа, высота атмосферы $H=17\,\,\mathrm{кm}$, плотность атмосферы одинакова на всех высотах.

Какова в этой модели температура атмосферы вблизи поверхности Венеры? Ускорение свободного падения у поверхности Венеры $g=8,8~{\rm M/c}^2$. Молярная масса углекислого газа $\mu=44~{\rm F/M0Лb}$. Универсальная газовая постоянная $R=8,31~{\rm Дж/(M0Лb\cdot K)}$. Углекислый газ считайте идеальным газом. Ответ приведите в $[{\rm K}]$ с округлением до целого числа.

Задача 8 #31 1D 4890

В простейшей модели атмосферы Венеры предполагалось, что планету окружает атмосфера, состоящая из углекислого газа, высота атмосферы $H=15~\mathrm{KM}$, плотность атмосферы одинакова на всех высотах.

Какова в этой модели температура атмосферы вблизи поверхности Венеры? Ускорение свободного падения у поверхности Венеры $g=8,8~{\rm M/c}^2$. Молярная масса углекислого газа $\mu=44~{\rm \Gamma/M0Лb}$. Универсальная газовая постоянная $R=8,31~{\rm Дж/(M0Лb\cdot K)}$. Углекислый газ считайте идеальным газом. Ответ приведите в $[{\rm K}]$ с округлением до целого числа.

Задача 8 #32 1D 4891

В простейшей модели атмосферы Венеры предполагалось, что планету окружает атмосфера, состоящая из углекислого газа, высота атмосферы $H=13\,\,\mathrm{KM}$, плотность атмосферы одинакова на всех высотах.

Какова в этой модели температура атмосферы вблизи поверхности Венеры? Ускорение свободного падения у поверхности Венеры $g=8,8~{\rm M/c}^2$. Молярная масса углекислого газа $\mu=44~{\rm \Gamma/Mоль}$. Универсальная газовая постоянная $R=8,31~{\rm Дж/(моль\cdot K)}$. Углекислый газ считайте идеальным газом. Ответ приведите в $[{\rm K}]$ с округлением до целого числа.

Задача 9

Задача 9 #33 1D 4892

В лаборатории установлен цилиндр, в котором под поршнем находится идеальный газ. На поршень медленно насыпают песок. В процессе сжатия объем газа в цилиндре уменьшился в n=6 раз.

Какую долю массы песка следует после этого медленно убрать с поршня, чтобы объем газа в цилиндре увеличился в k=2 раза? Температуру газа в этих процессах считайте постоянной. Масса поршня не является пренебрежимо малой. Атмосферное давление не изменяется. Ответ приведите с округлением до десятых.

Задача 9 #34 ID 4893

В лаборатории установлен цилиндр, в котором под поршнем находится идеальный газ. На поршень медленно насыпают песок. В процессе сжатия объем газа в цилиндре уменьшился в n=10 раз.

Какую долю массы песка следует после этого медленно убрать с поршня, чтобы объем газа в цилиндре увеличился в k=5,3 раза? Температуру газа в этих процессах считайте постоянной. Масса поршня не является пренебрежимо малой. Атмосферное давление не изменяется. Ответ приведите с округлением до десятых.

Задача 9 #35 ID 4894

В лаборатории установлен цилиндр, в котором под поршнем находится идеальный газ. На поршень медленно насыпают песок. В процессе сжатия объем газа в цилиндре уменьшился в n=9 раз.

Какую долю массы песка следует после этого медленно убрать с поршня, чтобы объем газа в цилиндре увеличился в k=2,7 раза? Температуру газа в этих процессах считайте постоянной. Масса поршня не является пренебрежимо малой. Атмосферное давление не изменяется. Ответ приведите с округлением до десятых.

Задача 9 #36 1D 4895

В лаборатории установлен цилиндр, в котором под поршнем находится идеальный газ. На поршень медленно насыпают песок. В процессе сжатия объем газа в цилиндре уменьшился в n=5 раз.

Какую долю массы песка следует после этого медленно убрать с поршня, чтобы объем газа в цилиндре увеличился в k=2,8 раза? Температуру газа в этих процессах считайте постоянной. Масса поршня не является пренебрежимо малой. Атмосферное давление не изменяется. Ответ приведите с округлением до десятых.

Задача 10

Задача 10 #37 1D 48%

Для увеличения температуры одноатомного идеального газа на $\Delta T=10~{
m K}$ в изобарном процессе понадобилось на $\Delta Q=900~{
m Дж}$ теплоты больше, чем в процессе с прямо пропорциональной зависимостью давления от объема.

Какую работу совершит внешняя сила при медленном сжатии этого газа без подведения теплоты к тому моменту, когда температура газа увеличится на $\Delta T_1=3~\mathrm{K}$? Во всех процессах число моль газа одинаковое. Ответ приведите в $[\![\mbox{Дж}]\!]$ с округлением до целого числа.

Задача 10 #38 ID 4897

Для увеличения температуры одноатомного идеального газа на $\Delta T=15~{
m K}$ в изобарном процессе понадобилось на $\Delta Q=1500~{
m Дж}$ теплоты больше, чем в процессе с прямо пропорциональной зависимостью давления от объема.

Какую работу совершит внешняя сила при медленном сжатии этого газа без подведения теплоты к тому моменту, когда температура газа увеличится на $\Delta T_1=2~\mathrm{K}$? Во всех процессах число моль газа одинаковое. Ответ приведите в $[\mbox{Дж}]$ с округлением до целого числа.

Задача 10 #39 1D 4898

Для увеличения температуры одноатомного идеального газа на $\Delta T=20~{
m K}$ в изобарном процессе понадобилось на $\Delta Q=1000~{
m Дж}$ теплоты больше, чем в процессе с прямо пропорциональной зависимостью давления от объема.

Какую работу совершит внешняя сила при медленном сжатии этого газа без подведения теплоты к тому моменту, когда температура газа увеличится на $\Delta T_1=5~\mathrm{K}$? Во всех процессах число моль газа одинаковое. Ответ приведите в $[\mbox{Дж}]$ с округлением до целого числа.

Задача 10 #40 1D 4899

Для увеличения температуры одноатомного идеального газа на $\Delta T=16~{
m K}$ в изобарном процессе понадобилось на $\Delta Q=800~{
m Дж}$ теплоты больше, чем в процессе с прямо пропорциональной зависимостью давления от объема.

Какую работу совершит внешняя сила при медленном сжатии этого газа без подведения теплоты к тому моменту, когда температура газа увеличится на $\Delta T_1=3~\mathrm{K}$? Во всех процессах число моль газа одинаковое. Ответ приведите в $[\![\mbox{Дж}]\!]$ с округлением до целого числа.

99997629489